On inverse spectral theory for self{adjoint extensions: mixed types of spectra

نویسندگان

  • Sergio Albeverio
  • Johannes Brasche
  • Hagen Neidhardt
چکیده

Let H be a symmetric operator in a separable Hilbert space H. Suppose that H has some gap J . We shall investigate the question about what spectral properties the self{adjoint extensions of H can have inside the gap J and provide methods how to construct self{adjoint extensions of H with prescribed spectral properties inside J . Under some weak assumptions about the operator H which are satised, e. g., provided the de ciency indices of H are in nite and the operator (H ) 1 is compact for one regular point of H, we shall show that for every (auxiliary) self{adjoint operator M 0 in the Hilbert space H and every open subset J0 of the gap J of H there exists a self{adjoint extension ~ H of H such that inside J the self{adjoint extension ~ H of H has the same absolutely continuous and the same point spectrum as the given operator M 0 and the singular continuous spectrum of ~ H in J equals the closure of J0 in J . Moreover we shall present a method how to construct such a self{adjoint extension ~ H. Via our methods it is possible to construct new kinds of self{ adjoint realizations of the Laplacian on a bounded domain in Rd , d > 1, with spectral properties very di erent from the spectral properties of the self{adjoint realizations known before. Mathematics Subject Classi cation (1991). 47A10, 47A60, 47B25, 47E05, 47F05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

The Two - Spectra Inverse Problem for Semi - Infinite Jacobi Matrices in The Limit - Circle Case ∗ † ‡ Luis

We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case. Mathematics Subject Classification(2000): 47B36, 49N45, ...

متن کامل

The Two-Spectra Inverse Problem for Semi-Infinite Jacobi Matrices in The Limit-Circle Case∗†‡

We present a technique for reconstructing a semi-infinite Jacobi operator in the limit circle case from the spectra of two different self-adjoint extensions. Moreover, we give necessary and sufficient conditions for two real sequences to be the spectra of two different self-adjoint extensions of a Jacobi operator in the limit circle case. ∗Mathematics Subject Classification(2000): 47B36, 49N45,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996